Cobalt/polypyrrole nanocomposites with controllable electromagnetic properties.

نویسندگان

  • Haicheng Wang
  • Ning Ma
  • Zhiran Yan
  • Ling Deng
  • Jun He
  • Yanglong Hou
  • Yong Jiang
  • Guanghua Yu
چکیده

In this work, cobalt/polypyrrole (Co/PPy) nanocomposites were prepared via an in situ oxidation polymerization of pyrrole in an aqueous dispersion of Co nanoparticles (NPs). The Co/PPy nanocomposites showed good electromagnetic properties because of the coexistence of magnetic loss and dielectric loss to electromagnetic waves. The electromagnetic wave absorbing bandwidth (reflection loss < -10 dB) for Co/PPy (30 wt% in a paraffin matrix) was located at 11.7-16.47 GHz with a thickness of 2 mm, and with a maximum reflection loss (around -33 dB) at 13.6 GHz. More interestingly, the electromagnetic wave absorbing properties of the nanocomposites can be easily controlled by tuning the ratio of the two components in the composites. This improved electromagnetic wave absorption may be attributed to the excellent electromagnetic match at the corresponding resonance peaks for dielectric and magnetic loss. These magnetic nanoparticles/conducting polymer nanocomposites are great potential candidates for use as electromagnetic wave absorbents due to their excellent properties such as wide absorbing frequency, strong absorption, good compatibility, low density and controllable absorbing properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced Graphene Oxide Functionalized with Cobalt Ferrite Nanocomposites for Enhanced Efficient and Lightweight Electromagnetic Wave Absorption

In this paper, reduced graphene oxide functionalized with cobalt ferrite nanocomposites (CoFe@rGO) as a novel type of electromagnetic wave (EW) absorbing materials was successfully prepared by a three-step chemical method including hydrothermal synthesis, annealing process and mixing with paraffin. The effect of the sample thickness and the amount of paraffin on the EW absorption properties of ...

متن کامل

Flexible Radar Absorbing Nanocomposites Based on Co-ferrite/Nano Carbon/polymeric epoxy resin

In this research work cobalt-ferrite (CoFe2O4) nanoparticles were synthesized by a simple, general sol-gel auto-combustion method. For this study, electromagnetic (EM) wave absorbing coatings with different weight fractions of nano-carbon and CoFe2O4 (which, arises from both dielectric and magnetic contributions) and polymeric epoxy resin were prepared and their characteristics were fully inves...

متن کامل

Magnetic properties of polypyrrole - coated iron oxide nanoparticles

Iron oxide nanoparticles were prepared by sol gel process. In-situ polymerization of pyrrole monomer in the presence of oxygen in iron oxide ethanol suspension resulted in a iron-oxide polypyrrole nanocomposite. The structure and magnetic properties of the nanocomposites with varying pyrrole concentrations are investigated. The X-Ray diffraction studies indicate the presence of γ − Fe2O3 phase ...

متن کامل

Trapping of microwave radiation in hollow polypyrrole microsphere through enhanced internal reflection: A novel approach

In present work, spherical core (polystyrene, PS)/shell (polypyrrole, PPy) has been synthesized via in situ chemical oxidative copolymerization of pyrrole (Py) on the surface of sulfonated PS microsphere followed by the formation of hollow polypyrrole (HPPy) shell by dissolving PS inner core in THF. Thereafter, we first time established that such fabricated novel art of morphology acts as a con...

متن کامل

Improving Radar Absorbing Capability of Polystyrene Nanocomposites: Preparation and Investigation of Microwave Absorbing Properties

Microwave absorbing materials are usually designed to solve protection against electromagnetic interference in wireless communication systems and high frequency circuit mechanisms. In this research polystyrene (PS) nanocomposites containing various nano-fillers were successfully synthesized. The novelty of this work is comparing of three various nanostructures: non-metallic conductive graphene ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 16  شماره 

صفحات  -

تاریخ انتشار 2015